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NONPARAMETRIC ESTIMATION OF THE PROBABILITY OF
A LONG DELAY IN THE H/G/l QUEUE

BY

D. P. GAVER
P. A. JACOBS

OPERATIONS RESEARCH DEPARTMENT
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CA 93943-5000

1. Introduction

The application of probability theory to a wide variety of congestion

problems has been well catalogued in many papers. Most of the elegant

solutions obtained are in somewhat implicit form, being presented as

functional equations, or, frequently, as integral (Laplace) transforms,

generating functions, and sometimes as combinations of the above. The

results obtained naturally appear in terms of component distribution

functions and stochastic processes (renewal, Poisson etc). Only rarely are

issues addressed that arise when actual data is to be used as a basis for

inference from the models; however, see Cox [1965].

In this paper we consider the nonparametric estimation of the

probability of a long customer delay in an H/G/l system, given a known

Poisson arrival rate A and observations of independent service times from

the service distribution, presumed unknown. Although the approach and

results are given concretely for the M/G/l system, they apply more widely.

To be specific, consider a single server system approached by a

stationary Poisson (A) traffic with A known. Service times, X are

independent identically distributed with unknown distribution functionF

assume XEE[X] p < 1. Let observations of the service times be all that is

Im



known about F; denote these by x,, x2, ... , xn . The objective is to supply

nonparametric estimates, and error assessments thereof, of the probability

of a long delay experienced by an arriving customer.

It is well known that if W(t) is the virtual waiting time in the M/G/1

queue and p < 1, then the moment generating function

E[e sW] = lim E[e sW(t)] (1.1)

- (1-p) {I 4 [EZe s x -I
sE[X]

. I- (1-p)[1 - pA(s)]f

where A(s) is the moment generating function of a distribution H. If A(s)

exists for s < so, so > 0, then there will be a smallest real zero s - K > 0

of the denominator of (1.1) which can be used to show that

P{W > w) - D(K) e- KW ,  W (1.2)

.%

We will always assume this is the case.

One way of establishing (1.2) is to introduce

()=E[e s - I] = ®(13%(s) E=s s P{W > w} eSWdw(1 3

0

into (1.1) and to rewrite in the form

[A(s) 1 (1.4
( 0[) - pA(s)Y(s) (1.4)
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which is equivalent to the terminating renewal equation, see Feller [19661

p. 362,

w

Fw (w) - PW > w} - pH(w) + p f P{W > w-xJ H(dx) (1.5)

0

where
w

H(w) -f &Lx >.Xidy. (1.6)E[X] y ( 6

0

#  WFollowing Feller, introduce F (w) - FW(w) e 0 real and positive, into

(1.5) to obtain

## V ex
F w(w) - p H (w) + f F(w-x) pe H(dx). (1.7)

0

Choose e = < so that

peXH(dx) #H(dx) - 1 (1.8)

0 0

yielding a standard renewal equation for Fw . From the key renewal theorem,

it follows that

-# Kw c(K)
SF (w) lim F w)e (1.9) ..........

W-00 W * M 1
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where

c(K) - p f eKx H(x)dx (1.10)

0

and
o

m(K) = p f xe X H(dx). (1.11)

4: 0

Summarizing

P{W > t1 - (K) e - t t (1.12)

where K is the positive solution to the equation

Ae [ (e) - 1] 1 1 (1.13)

with

¢(e) - E[e ex 1 . (1.14)

In section 2, a nonparametric estimate, K, of K is studied which solves

equation (1.13) with the empirical moment generating function replacing ¢.

This eitimate is related to an estimate studied by Stigler [1971] in the

context of estimating the probability of extinction for branching processes.

K is shown to be a consistent estimate of K having a distribution in the

domain of attraction of a stable law. Under certain conditions, a central

limit theorem for K can be obtained.

"-4-
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In section 3 a nonparametric estimate of

c~)a ,(K) -Kt

p(t) m7 e (1.15)

is given.

In Section 4, some results of simulation studies of the estimates of <

and p(t) are presented.

2. Nonparametric Estimation of the Exponent K of the Probability of a

Long Wait

Assume for the remainder of the paper that X-I is known. Let

Xl, ..., x be the observations of the service times. A non-parametric1 n

estimate of the moment generating function of the service time distribution

is

n ex.
0(6) = n 1 e (2.1)

n i 1

The sample equivalent to equation (1.13) is thus

1 - 1 e-[c(e)-l]. (2.2)

At e - 0, the RHS of (2.2) is x which is less than 1 if

x 1 2 n 1; the data can only be analyzed for a stationary
n

model under this assumption, which will be maae in what follows. Further,
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(2.2) has a unique solution, K, which is an estimate of K. A three-term

Taylor's expansion of the RHS of (2.2) about 8-0 gives an initial estimate

K H - 2[1 - x] (x')-1 (2.3)

I k k th
where x I [x + + x the k sample moment. Since

1 n

x 2 a x2 , K H is an upper bound for K. Equation (2.2) can

be solved via search or Newton-Raphson iteration to obtain the estimate K.

We will now present asymptotic results for the distribution of K as the
.5

sample size n ®. By assumption, if X is a random variable having the

service time distribution, then E[e B ' ] < - for some B' > K > 0. Thus,

there is B > K such that for all 0 < b S B

.- [,.

E[xnebX ] < 0. (2.4)

It follows from the monotonicity of the RHS of (2.2) that

P{ > B} _ pj{(B) 1 " [0(B) - 11 [B B B

P{O(B) - <(B) BB) - ]]j (2.5)

Since O(0) is a monotone function and B > K, [I - B [0(B) -1]] is negative.

Thus, by the strong law of large numbers

Se I-6-



lir Ptic > B) - 0. (2.6)
n-

Let

f(e) - 1 - e -10(e) - ]. (2.7)

Expand f(K) in Taylor's series about the solution K of (1.13). Since

f(W) . 0,

2
0 If ( ( ( - f' ) 2 f''(0) (2.8)

fDr i ome ". Thus

•( -f(KKf'( ) + - (K-K) f''(eK)] ; (2.9)

.-- cXe X + e - 1] - B 0 0. (2.10)

" large numbers

S-L t - (2,11)

i m f'( ) - B < 0 (2.12)

i,'3
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with probability 1. It follows from (2.6), (2.9), (2.11) and (2.12) that K

converges in probability to K as n . Thus, K is a consistent estimate of

eK.

If E[e 2 cx ] < , then

SVar[f(K)] -- Var[eX] - r .(2.13)

By the central limit theorem

-n K F [-f(K)I [f'(K) + -(-) f'(eK)] (2.14)
r r 2

is asymptotically standard normal as n -.

If E[e 2 XX  = , then the distribution G of eKX is in the domain of

attraction of a stable law with index 1 < a < 2, see Feller [1966]. Let

a n I be a sequence of numbers such that

a
n 2 n x 2 G(dx) 1 1 as n - ®. (2.15)

n 0

The normalized random variable

^ - n[_1 n KX. 1 -1

a - ] -[- ~ ][f(K) ~( )f'e) 216)an n i-I

' -8-~..'



is in the domain of a stable law with index a, where 1 < ot < 2 is such that

x2G(dx) 2- L(y) where L is a slowly varying function.

0

To summarize, we have the following result.

PROPOSITION a. K is a consistent estimate of <.

2 X
b. If E[e I< -, then the distribution of K-K is

asymptotically normal.

2KcXc. If E[e 2 ] = -, then K-K is in the domain of

attraction of a stable law.

ft, We will suppose for the remainder of this section that the service time

distribution is exponential with mean > 1 In this case, (since X-1 by
2

assumption),

K - 1; (2.17)

"" 2 -1

Varle ] = I ( -l) (2-u) ; (2.18)

and

= -1. (2.19)

From the central limit theorem (2.14)

• ... ,

4'-.- nVar(K)- 2 j(2- ) = +. (2.20)

-9-
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Therefore, if g(x) - (1-x 2 ) 1 sin-l(-x), then

2nVar[g(K)] - [g'()] nVar[K] - 1.

Thus, g is an asymptotically variance-stabilizing transform of K. The

simpler related transformation ln(1+K) is used in the simulations of K

reported in Section 4.

3. A Nonparametric Estimate of P{W > t)

The asymptotic analytic result is

S> () e- t N p(t) (3.1)
m(K)

as t

where
00

c(K) - f eKy  f P{X > x}dx dy (3.2)

0 y

= f - P{Xcdx} + f c[e - 1 - x (Kx)2  P{Xcdx}

0 0

and

CO

m(6) - f xeKX P[X > x) dx (3.3)

0

-10-
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w
- Kxe PX dx} - f -(e _ 1) P{Xdx}}

0 0

12 X2 P{XEdx} + I K: fX P{Xcdx}

0 0

+ f (icx - 1) R(x) PXlXedx}

0

where

R(x) [ [eKX _ 1 - x (.cx) 2  (3.4)2

An estimate of P{W > t} is

p(t) _ K ) -Kt (3.5)
m(K)

where K is the positive solution to equation (2.2);

() - I + R (K); (3.6)

m(K) 12 1"(37)

m(Ic) + L K- * X1 + R2(K); (3.7)
2 2 2

1 n <KX . (Kx.)

RI(K) = n (e KX - 1 (3.8)
n 1 2



^ ^ )2

R (^- ( R I n x (Kx.
i-iR ( ) - ( RI( ) + 1C x x (e - xi  2 (3.9)21n i 1I

The forms of c(c) and m(K) are chosen for the numerical stability of the
^ ̂  ̂ ̂  -1.

ratio c(c) m(K)

In the remainder of this section we will assume the service time

distribution is exponential with mean > - and x < 1. In this H/M/i queue2 2
case, it is well known that

p(t) - exp{-(u-l)tl = (1 + K)-1 eIKt (3.10)

from (2.16).

We will now motivate a transformation of p(t) which is used in the

simulation studies. Let Y = ln(1+K), then K = e - 1 and

p(t) - exp{-Y - [e Y 
- 11t). (3.11)

Let

: h(Y) - ln p(t) - - Y - [e Y - 1lt (3.12)

and Y - ln(1 + K). A Taylor's expansion yields
4.

4%..

nVar[Y] - nVar[ln(1 + ) (3.13)

! (1+K) Var[K]

1 Y 2 -1
1 2 I_--- [ -(e - 1) 1

-12-

r row



from (2.20). Hence,

nVar[h(Y)] - [-1 -e t] 2 [I - (eY - 1) 2]1

- Y - 2 - Y 2 1- [- 1 - t- (e 1)t] 1 -(e - 1) 1 . (3.14)

It follows from the definition of h(Y) that

nVar[h(Y)] - [-(1+t) + h(Y) + Y]2 {1 - (e Y - 1)21-1 (3.15)

Y
Since 0 < K = e - 1 < 1, 0 < Y < In 2. Thus, for t large

nVar[h(Y)] - [-h(Y) + t]2  (3.16)

which suggests that the transformation In[t - In p(t)] will tend to

stabilize the variance of p(t), at least for exponential service time

distributions.

4. Simulation Results

In this section results are presented of a simulation experiment to

study small sample behavior of the estimates of K and P{W > t}. All

simulations were carried out on an IBM 3033AP computer at the Naval

Postgraduate School using the LLRANDOM II random number generating package;

Lewis and Uribe [1981]. In each replication 50 exponential service times

are generated. If the mean of the service times is larger than 1, equation

(2.2) has no positive solution. In this case, another 50 service times are

-13-



generated. The estimates, K of (2.2) and p(t) of equation (3.5) are

computed for each replication.

Standard errors of the estimates are estimated in two ways. One is the

appropriate asymptotic variance expression. The other is the jackknife

procedure.

The jackknife is a procedure originally introduced by Quenouille for

bias reduction [1956], and adapted by Tukey [1958] to obtain approximate

confidence intervals. Suppose interest is on a parameter e (e.g. K or p(t))

that is estimated by e using a complex calculation from data x ,....,xn . The

idea is that of assessing variability by recomputing e after removing

independent subgroups of data of equal size, and then using the recomputed 6

values to estimate a variance which is in turn applied to state a standard

error or a two-sided confidence interval that contains the true 6 with

specified confidence. A few more details follow; for more, see Efron [1982]

and his more recent work, or Mosteller and Tukey [1977]. The actual

calculation involves splitting the n data points into g disjoint groups of

size m; n-mg. In our simulations g is always 10. Then calculate (_P)

j-1,2,...,g: the estimate of 6 based on a reduced data set that omits the

.th
J group. In the simulations, the first group is the first five

(unordered) service times; the second group is the second five service

times, etc.

Now Tukey computes pseudo-values

y. - ge - (g-1) 6 ( - j)

-14-



which are treated as independent. Tukey recommends ref-rring the mean of

the pseudo-values y to Student's t with g-1 degrees of freedom to obtain

confidence limits.

In the jackknife procedure to estimate K, it is sometimes the case that

a positive solution of equation (2.2) does not exist for the data set that

th
omits the j subgroup because the mean of this reduced data set is larger

than 1. In this case, i(_j) is set equal to the smallest of the K(i)'s that

could be computed for the sample considered..

Similiarly, in a jackknife procedure to estimate p(t), it is sometimes
- A

At the case that either K does not exist or p(_j)(t) exceeds 1 for the
(-~J)

th
reduced data set that omits the j subgroup. In this case p(_j) is set

equal to the largest of those P(_i)'s that could be computed and were less

than 1.

4.1 Results of a Simulation Experiment to Estimate <

In this subsection results ar, given of a simulation experiment to

estimate K. For each replication, three different estimates of K were

computed. Estimate I, Kit is computed by numerically solving (2.2) by

search starting with the initial value KH of (2.3). Estimate II, KI

is obtained by jackknifing K using ten subgroups; the mean of the pseudo-

values is the estimate. Estimate III is obtained by jackknifing ln(1+K)

using ten subgroups; the inverse transform of the mean of the pseudo-values

e- I is used as the estimate of <. In the cases of Estimates II and "i,

-p5-



if the estimate is negative, it is set equal to 0. For each estimate, the

average bias

500

and the relative mean square error i-

500 ICP2

Rel MSE - ;-[0LJ

are computed where

W-1 J~

in the case of exponential service times with mean < 1.

Results of the simulation appear in Table 1. All of the estimates have

about the same relative mean square error. Jackknife estimates II and III

have smaller bias than the straightforward estimate I. Jackknifing c itself

rather than ln(c+l) gives the smallest bias. As - increases all the

estimates have increased relative mean square error.

A simulation study was conducted to compare the performance of

different confidence interval procedures. For each replication three 80%

confidence intervals were constructed. Interval procedure I is a normal

confidence interval which uses the straightforward estimate of <, Kit, as the

point estimate; the estimate of the variance is the data version of the

asymptotic variance in the central limit theorem (2.14);



A2 =2;-2 1 KX A2

aCLT K (e O(K) (4.1)
i

where

= e (4.2)
ni

KX. KX.

e x.e ( 4 . 3 )

with K = K in this case. The 80%-point of the normal distribution is used

to construct the interval. Limits that are negative are set equal to 0.

Confidence interval procedure II is a jackknife confidence interval

which jackknifes I and uses the 80% point of the student t-distribution with

9 degrees of freedom. Limits that are negative are set equal to 0.

Confidence interval procedure III is a jackknife confidence interval

which jackknifes ln(c+1) and uses the 80% point of the student

At-distribution with 9 degrees of freedom to give a confidence interval for

-€., ln(i+1). The inverse transformation of the endpoints of the interval gives

an interval for K; limits that are negative are set equal to 0.

, Results of the confidence interval simulation appear in Table 2.

Reported are the number of 500 intervals that cover the true value of

, (C); the number of the 500 intervals such that the entire interval lies

below <, (B); and the number of the 500 intervals such that the entire

.7,,

! -1 7-



interval lies above the true value, (H). The average length of the

confidence intervals is also given.

The number of intervals that cover the true value of <for procedure

III is within .80 ± (1.96)/- ( . 2) (.8) - [.765, .835]. All but one case

of the normal confidence intervals Of procedure I are Outside this range.

All but one case using confidence interval procedure II are inside this

range. The average width of confidence intervals for procedures II and III

are about the same. Thus, although the jackknife estimate < Iis a little

more biased than KIII1,the coverage of the jackknife confidence interval for

ICIIappears to be somewhat better than for jackknife confidence interval

procedure II.

% %.%
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TABLE I

Bias and Mean Relative Square Error

for Estimates of K

Distribution Exponential Exponential Exponential Exponential

-=0.6 -- 0.7 - 0.8 -=0.9

Estimate K .6667 - .4286 - .2500 = .1111

B Rel MSE B Rel MSE B Rel MSE B Rel MSE

(S.E) (S.E.) (S.E) (S.E.) (S.E) (S.E.) (S.E) (S.E.)

1 .1147 .2350 .0557 .3292 .0057 .6026 .0865 2.400

(.014) (.021) (.011) (.029) (.008) (.054) (.0067) (.2134)

[.172] [.130] [.023] [.779]

II .0219 .2256 .0067 .3095 .0102 .5382 .0469 1.785

(.014) (.019) (.011) (.025) (.008) (.046) (.0063) (.161)

[.033] [.016] [.041] [.422]

'1 .0533 .2212 .0160 .3073 .0268 .5576 .0608 1.997

(.014) (.019) (.011) (.027) (.008) (.049) (.008) (.177)

[.080] [.037] [.1072] [.5472]

.9$9
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Table 2

Confidence Intervals for K

Coverage Width

Procedure I II III I II III

B (C) H B (C) H B (C) H AV AV AV

Distribution % (%) % % (%) % % (%) % (S.E.) (S.E.) (S.E.)

Exponential

0.6 45 (363) 92 38 (408) 54 29 (395) 76 .6402 .8089 .7752

- .6667 9 (72.6) 18.4 7.6 (81.6) 10.8 5.8 (79) 15.2 (.005) (.0124) (.0114)

Exponential
- 0.7 49 (380) 71 50 (409) 41 42 (399) 59 .5279 .6255 .6157

- .4286 9.8 (76) 14.2 10 (81.8) 8.2 8.4 (79.8) 11.8 (.004) (.009) (.009)

Exponential
1 - 0.8 28 (407) 65 38 (420) 42 33 (413) 54 .4441 .4831 .4903

- .2500 5.6 (81.4) 13 7.6 (84) 8.4 6.6 (82.6) 10.8 (.005) (.008) (.008)

Exponential
1 - 0.9 1 (429) 70 54 (408) 38 52 (392) 56 .3733 .3763 .3923

K .1111 .002(85.8) 14 10.8 (81.6) 7.6 10.4 (78.4)11.2 (.005) (.009) (.009)

4.2 Simulation Results for Estimating p(t)

In this subsection, results are given of a simulation experiment to

estimate p(t). For each replication three estimates of p(t) are computed.

Estimate I, pI(t) is computed for each replication using formulas (2.2),

(3.5) - (3.9). If Pi(t) exceeds 1, it is set equal to 1.

-20-



There are (at least two) possible ways to implement a jackknife

procedure to estimate p(t). Estimate II is obtained by jackknifing ln(<+l);

an estimate of < is obtained by the inverse transformation of the mean of

the pseudo-values YLK'

^ YLK
KII " e -1I;

KII is used in formulas (3.5) - (3.9) to obtain the estimate piI(t). If

PH (t) exceeds 1, it is set equal to 1.

Estimate III is obtained by jackknifing In[t - ln p(t)]; if p(t)

th
exceeds 1 for a reduced data set that omits the j subgroup, the estimate

of ln[t - ln p(t)] for that reduced data set is put equal to the smallest

estimate that could be computed from the other reduced data sets. An

estimate of p(t) is obtained by inverse transformation of the average of the

pseudo-values YLPR;

t -YLPR
PIII(t) = e e

If pIII(t) > 1, it is replaced by 1.

For each estimate, the average bias

1500
B EP-(t) - p(t)] (4.4)B - 50--- i i

and the relative mean square error

4 -21-
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500 [Pi(t) - 2 pt]

ReloMSE --. - t (4.5)
500 L p (t)

are computed where

p(t) - - e (4.6)
Li

The results appear in Table 3.

TABLE 3

Mean Bias and Mean Relative Square Errors

for Estimates of p(t).

Distribution Exponential Exponential Exponential1 1 1

-.6, T-1 - -.7, T-2 - T.8, T-3

p(1) - .3081 p(2) - .2971 P(3) - .3779

Estimate B Rel MSE B Rel MSE B -l MSE

(S.E) (S.E.) (S.E) (S.E.) (S.E) (S.E.)

1 .004 .138 .024 .328 .005 .326

(.005) (.009) (.008) (.026) (.010) (.020)

II .044 .216 .060 .409 .054 .436

(.006) (.020) (.008) (.032) (.011) (.031)

II .0138 .137 .040 .354 .034 .397

(.005) (.009) (.008) (.030) (.011) (.029)

o-r -
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The entries for estimate II in Table 3 suggest :.

then computing the estimate of the probability :using n.w - .

of K increases the bias and relative mean square -r..

p (t) the straight-forward estimate. The entr:- f

the jackknifing in[t - in p(t)] gives about *2,-

error as the original estimate p (t) but ircr--.-

A simulation experiment was conductec -

confidence intervals obtained by jacKknifir.; -.

simulation replication, the average and var:

cornputed;

10
Y J 1 - 0- Y(

1 10
j - . (y(j)-y)Y.

J.jml J

An 80% confidence interval for ln[t - in p(t)] is

[LPL, LPV] = yje (1.383) 1 V7T

where 1.383 is the 80% point for a Student's t-distribution with degrees

of freedom. The limits of the interval are inversely transformed to give a

confidence interval for p(t).
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PL -exp~t - e LP

and

PV- exptt - e LP L

If a confidence limit exceeds 1, the limit is set equal to 1.

Results of the confidence interval simulation appear in Table 4~.

Reported are the number of the 500 intervals that cover the true value

p(t) (C); the number of the 500 intervals for which the upper limit PU is

below p(t) (B); and the number of the 500 intervals such that the lower

limit PL is above the true value (H). The average width of the confidence

interval is also given..

4%
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Table 4.
80% Confidence Intervals for p(t)

Coverage Average Width

B C H (standard error)

Exponential

--.6, T-1 56 415 29 .325

P(1) - .3081 (11.2) (83) (5.8) (.006)

Exponential

1 -.7, T-2 52 408 40 .1477
1-i

p(2) - .2971 (10.14) (81.6) (8) (.009)

Exponential

14

P(3) - .3779 (10.8) (82.14) (6.8) (.010)

The coverage of the confidence intervals is within

.80 (1.96) (.8)(.2) -. 80 ± .035 - [.765, .835]. The width of the
500

interval increases as -increases.

4.3 Simulation Results for Estimating p(t) for Mixed Exponential Service

Times

In this subsection, results are given of a simulation experiment to

estimate p(t) - PCW~tl in the case of mixed exponential service times. For

-25-



each replication 50 random numbers are generated from a mixed exponential

distribution with

2 1 t 1 2t, ,P [Sn t} -fe + e, t >O .

The estimate ln[t - lnp(t)] is jackknifed with ten subgroups as before where

p(t) is given by (3.5) and 80% confidence intervals are constructed. Each

simulation has 500 replications.

The asymptotic distribution of the virtual waiting time, W, can be

found by inverting the moment generating function (1.1); it is a mixture of

two exponential random variables.

Table 5 reports results of three simulations.

Case I: .30 i - .90, T 1,
A~P P '12

E(S) - 0.6, P{W>T} - .3404;

Case II: 1 - - 1.05, T = 2,

E(S) - 0.7, P{W>TJ - .3459;

Case 11: .40 1.20, T- 3,
112

I . E(S) - 0.8, P{W>T} - .4333;

-26-
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For each simulation, the mean bias and relative mean square error (4.4))

and (4.5) are computed with p(t) - P[W>t}. Confidence interval coverage and

average widths are also computed.

Both cases II and III each had one replication for which Using all the

data to compute the estimate p(t) of (3.5) resulted in a value larger than

1; these two replications are not counted in the summary statistics in Table

5.

Comparison of the mean biases and mean relative square errors of Table

5 with those of estimate III in Table 3 shows that they are about the same

for both service time distributions. The coverage of the confidence

intervals in Table 5 is-again within [.765, .835]. However, the average

length of the confidence intervals for the mixed exponential cases are

larger than those reported in Table 4 for the exponential distributions.
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Table 5

Results for Estimates of P{W>tl
for an M/C/1 Queue with Mixed
Exponential Service Times

Dtbt n Estimate Confidence Intervals

i uoCoverage Width

Cs Bias Rel MSE B (C) H Average

(S.E) (S.E.) % ( ) % (S.E.)

1 .024 .172 58 (407) 35 .392

(.006) (.013) 11.6 (81.4) 7 (.007)

II .040 .384 63 (408) 28 .500

(.009) (.028) 12.6 (81.4) 5.6 (.010)

III .022 .350 54 (411) 34 .637

(.011) (.021) 10.8 (82.4) 6.8 (.011)

4.4 Simulation Results for Estimating P{W>t} for Gamma Distributed Service

Times

In this subsection, results are given of a simulation experiment to

estimate p(t) - P{W>t} in the case of gamma service times. Each experiment

has 500 replications. For each replication, 50 service times are generated

having the distribution of the sum of two exponential random variables each

having mean -. The estimate ln[t - ln p(t)] is jackknifed with ten

subgroups as before where p(t) is given by (3.5) and 80% confidence

intervals are constructed.

-28-
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The asymptotic distribution of the virtual waiting time, U, can be

found by inverting the moment generating function (1.1); it is a mixture of

two exponential random variables.

Table 6 reports results of three simulations.

Case I: 1 - .30 T - 1,

E(S) - 0.6, P{W>T} - .2508;

Case 11: .35 T- 2,

E(S) - 0.7, P{W>T} - .2232;

V]

Case III: 1 - .40 T = 3,
11

E(S) - 0.8, P{W>T} .2950;

4I
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Table 6

Results for Estimates of P(W>t}
for an M/G/1 Queue with Gamma

Service Times

Ds i EConfidence Intervals, Distribution Estimate Cvrg it
Coverage Widith

Bias Rel MSE B (C) H Average
Case (S.E) (S.E.) % (%) % (S.E.)

I .007 .110 61 (401) 38 .227

(.004) (.007) 12.2 (80.2) 7.6 (.003)

[I .0167 .299 61 (397) 42 .328

(.005) (.026) 12.2 (79.4) 8.4 (.007)

III .0251 .390 62 (407) 31 .490

(.008) (.034) 12.4 (81.4) 6.2 (.010)

The mean !ias and relative mean square error are about the same ab for

the exponential and mixed exponential service time distributions. The

confidence interval coverage is once again within [.765. .835]. The average

itn of the confidence intervals is smaller than the widths in the

exponential and mixed exponential cases. This is to be expected since the

gamma distribution has a shorter tail than the exponential or mixed

exponential distribution.

.- ~
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